How Statistical Arbitrage Can Lead to Big Profits

The efficient market hypothesis (EMH) states that financial markets are "informationally efficient" in that the prices of the traded assets reflect all known information at any given time. But if this is true, then why do prices vary from day-to-day despite no new fundamental information? The answer involves one aspect that is commonly forgotten among individual traders: liquidity.

Many large institutional trades throughout the day have nothing to do with information and everything to do with liquidity. Investors that feel overexposed will aggressively hedge or liquidate positions, which will end up affecting the price. These liquidity demanders are often willing to pay a price to exit their positions, which can result in a profit for liquidity providers. This ability to profit on information seems to contradict the efficient market hypothesis but forms the foundation of statistical arbitrage.

Statistical arbitrage aims to capitalize on the fundamental relationship between price and liquidity by profiting from the perceived mispricing of one or more assets based on the expected value of the assets generated from a statistical model.

Key Takeaways

  • Statistical arbitrage is an investment strategy that seeks to profit from the narrowing of a gap in the trading prices of two or more securities.
  • Stat arb involves several different strategies, but all rely on statistical or correlational regularities between various assets in a market that tends toward efficiency.
  • Even though it has the word "arbitrage" in its name, stat arb can be highly risky and lead to enormous and systemic losses, such as in the epic collapse of the hedge fund Long Term Capital Management (LTCM).

What Is Statistical Arbitrage?

Statistical arbitrage, or "stat arb" originated in the 1980s out of the hedging demands created by Morgan Stanley's equity block trading desk operations. Morgan Stanley was able to avoid price penalties associated with large block purchases by purchasing shares instead of closely-correlated stocks as a hedge against its large positions.

For instance, if the trading desk purchased a large block of shares in Coca-Cola, it would short a closely-correlated stock such as PepsiCo to hedge against any major downturns in the market during the short term. This effectively eliminated some of the market risk while the firm sought to place the stock it had purchased in a block transaction.

Traders soon began to think of these "pairs" not as an isolated block to be executed and its hedge, but rather as two sides of the same trading strategy, where profits could be made rather than simply as hedging tool. These pair trades eventually evolved into several more sophisticated strategies aimed at taking advantage of statistical differences in security prices due to liquidity, volatility, risk, or other fundamental or technical factors. We now classify these strategies collectively as statistical arbitrage.

Types of Statistical Arbitrage

There are many types of statistical arbitrage created to take advantage of several different types of opportunities. While some types have been phased out by an ever more efficient marketplace, there are several other opportunities that have arisen to take their place. Here are just a few of the primary stat arb strategies.

Risk Arbitrage

Risk arbitrage is a form of statistical arbitrage that seeks to profit from merger situations. Investors purchase stock in the target and (if it's a stock transaction) simultaneously short the stock of the acquirer. The result is a profit realized from the difference between the buyout price and the market price.

Unlike traditional statistical arbitrage, risk arbitrage involves taking on some risks. The largest risk is that the merger will fall through and the target's stock will drop to its pre-merger levels. Another risk deals with the time value of the money invested. Mergers that take a long time to go through can eat into investors' annual returns.

The key to success in risk arbitrage is determining the likelihood and timeliness of the merger and comparing that with the difference in price between the target stock and the buyout offer. Some risk arbitrageurs have begun to speculate on takeover targets as well, which can lead to substantially greater profits with equally greater risk.

Volatility Arbitrage

Volatility arbitrage is a popular type of statistical arbitrage that focuses on taking advantage of the differences between the implied volatility of an option and a forecast of the future realized volatility in a delta-neutral portfolio. Essentially, volatility arbitrageurs are speculating on the volatility of the underlying security rather than making a directional bet on the security's price.

The key to this strategy is accurately forecasting future volatility, which can stray for a variety of reasons including:

  • Patent disputes
  • Clinical trial results
  • Uncertain earnings
  • M&A speculation

Once a volatility arbitrageur has estimated the future realized volatility,they can begin to look for options where the implied volatility is either significantly lower or higher than the forecast realized volatility for the underlying security. If the implied volatility is lower, the trader can buy the option and hedge with the underlying security to make a delta-neutral portfolio. Similarly, if the implied volatility is higher, the trader can sell the option and hedge with the underlying security to make a delta-neutral portfolio.

The trader will then realize a profit on the trade when the underlying security's realized volatility moves closer to their forecast than it is to the market's forecast (or implied volatility). The profit is realized from the trade through the continual re-hedging required to keep the portfolio delta neutral.

Neural Networks

Neural networks are becoming increasingly popular in the statistical arbitrage arena due to their ability to find complex mathematical relationships that seem invisible to the human eye. These networks are mathematical or computational models based on biological neural networks. They consist of a group of interconnected artificial neurons that process information using a connectionist approach to computation—this means that they change their structure based on the external or internal information that flows through the network during the learning phase.

Essentially, neural networks are non-linear statistical data models that are used to model complex relationships between inputs and outputs to find patterns in data. Obviously, any pattern in securities price movements can be exploited for profit.

High-Frequency Trading

High-frequency trading (HFT) is a relatively new development that aims to capitalize on the ability of computers to quickly execute transactions. Spending in the trading sector has grown significantly over the years and, as a result, there are many programs able to execute thousands of trades per second. Now that most statistical arbitrage opportunities are limited due to competition, the ability to quickly execute trades is the only way to scale profits.

Increasingly complex neural networks and statistical models combined with computers able to crunch numbers and execute trades faster are the key to future profits for arbitrageurs.

How Statistical Arbitrage Affects Markets

Statistical arbitrage has come to play a vital role in providing much of the day-to-day liquidity in the markets. Initially, it helped enable large block traders to place their trades without significantly affecting market prices, while also reducing volatility in issues like American depositary receipts (ADRs) by correlating them more closely with their parent stocks.

Indeed, stat arb strategies, as they become more widely used and automated, tend to push the market toward greater efficiency. As arbitrage opportunities between assets arise, they are quickly eliminated through the use of these strategies. As a result, stat arb can lead to a more liquid, more stable market.

However, statistical arbitrage gone awry has also caused some major problems. The collapse of Long Term Capital Management (LTCM) back in 1998 almost left the market in ruins. In order to profit from such small price deviations, it is necessary to take on significant leverage.

Moreover, because these trades are automated, there are built-in security measures. In LTCM's case, this meant that it would liquidate upon a move downward; the problem was that LTCM's liquidation orders only triggered more sell orders in a horrible loop that would eventually be ended with government intervention.

Remember, most stock market crashes arise from issues with liquidity and leverage—the very arena in which statistical arbitrageurs operate. Stat arb algorithms have also been blamed in part for the "flash crashes" that the market has started to experience over the past decade. A flash crash is an event in electronic securities markets wherein a rapid sell-off of securities leads to a negative feedback loop that can cause dramatic price drops over a matter of minutes.

The Bottom Line

Statistical arbitrage is one of the most influential trading strategies ever devised, despite having decreased slightly in popularity since the 1990s. Today, most statistical arbitrage is conducted through high-frequency trading using a combination of neural networks and statistical models. Not only do these strategies provide liquidity, but they have also been largely responsible for some of the largest crashes we've seen in firms like LTCM in the past. As long as liquidity and leverage issues are combined, this is likely to continue making the strategy one worth recognizing even for the common investor.

Take the Next Step to Invest
×
The offers that appear in this table are from partnerships from which Investopedia receives compensation. This compensation may impact how and where listings appear. Investopedia does not include all offers available in the marketplace.